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THIS BRIEF paper is concerned with the efficiency of plate- 
type fins that consist of a continuous sheet pierced by a 
regularly spaced array of circular tubes; heat is to be 
extracted from (or added to) the tubes. The physical 
situation is illustrated in the center sketches of Figs. 1 
and 2, which pertain respectively to tubes in square 
array and in equilateral triangular array. These sketches 
also show symmetry lines (dashed) which are, in effect, 
insulated boundaries. Thus, in Fig. 1, the square region 
that surrounds the tube behaves like a fin with insulated 
edges. A similar interpretation applies to the hexagonal 
region contained within the dashed lines in the sketch of 
Fig. 2. Thus, the results for the plate fin are equally 
applicable to a fin of polygonal plan form. 

An important contribution to the aforementioned 
problem has been made by Zabronsky.* Specifically, 
Zabronsky analysed the case of tubes in square array 
and devised a temperature solution that exactly satisfies 
the adiabatic condition at the fin tip and that approxi- 
mately fulfills the prescribed isothermal boundary 
condition at the fin base. The analysis yields an expres- 
sion for the fin efficiency in terms of a double summation 
extending over a doubly infinite range. An illustrative 
numerical evaluation is carried out for a specific set of 
physical parameters. 

The present investigation employs an altogether dif- 
ferent method of analysis that exactly satisfies the iso- 
thermal boundary condition at the fin base; the adiabatic 
boundary condition at the fin tip is fulfilled approxi- 
mately, but to any desired accuracy. The analysis is 
carried out here both for the square and equilateral 
triangular arrays (i.e. square and hexagonal fins). The 
results are reported graphically in terms of dimensionless 
parameters that are standard in engineering application. 

The analysis is facilitated by reference to the sketches 
appearing at the right of Figs. 1 and 2. These represent 
typical elements of fin, the boundaries of which are 
symmetry lines (i.e. adiabatic) except for the base r = ri. 
For a fin of thickness 2r and thermal conductivity k 
exchanging heat with an adjacent fluid having a uniform 

._ 
* H. ZABRONSKY, Temperature distribution of a 

heat exchanger using square fins on round tubes, 
J. Appl. Mech. 22, 119 (1955). 

temperature T, and a uniform heat-transfer coefficient 
k, an energy balance on a fin element yields 

2kt [i( rg) + k$] = 2hr (T- T,) (1) 

A solution of equation (1) that exactly satisfies the 
boundary conditions at r = rt, $ = 0, and 4 = & (&, = p/6 
for triangular array and p/4 for square array) is 

i- 2 C, cos j4 [ K;i (P) - I? (P) Tf$f] (2) 
n-0 

where j = m/40 (j = 4n or 6n), p = r d[h/kt], 
pi = rid[h/kr]. and z0 is the temperature at the base 
surface. The K and Z are modified Bessel functions. 

To complete the solution, it still remains to find the 
constants C,. For this purpose, one applies the adiabatic 
condition that aTjaN = 0 (N = normal) at the right-hand 
boundary of the element, r = s/cos 4. Indeed, if this 
condition is imposed at p discrete boundary points, 
then there are generated p linear equations containing the 
CR; further, the series is truncated at n = p - 1. This 
gives p linear, inhomogeneous, algebraic equations for p 
unknown coefficients C,, . . . , C,_I. This algebraic 
system has been solved numerically. In all cases, the 
number of points p was taken sufficiently large to insure 
that the final results for fin efficiency are accurate to at 
least 0.1 per cent. 

With the temperature solution at hand, the rate of heat 
transfer Q at the fin base may be determined by applica- 
tion of Fourier’s law. Then, a fin efficiency 7 may be 
introduced. 

7 = Q/Qi<~eat, Qidral = 2A, h (TV - T,) (3) 

wherein Qrdcat corresponds to a fin of infinite thermal 
conductivity and As denotes the area of one surface 
of the fin. In presenting the results, it is convenient to 
introduce a fictitious outer radius rO* that corresponds 
to an annular fin having the same surface area as the 
polygonal fins under consideration. This is illustrated 
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FIG. 1. Efficiency of square fins. 

FIG. 2. Efficiency of hexagonal fins, 
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in the sketches at the right in Figs. 1 and 2. It is readily 
shown that 

r0* = P/d77ls, r,,* = [2d(3)/n]112s (4) 

respectively for the square and the triangular arrays. 
The defining equation (3) for 7 has been evaluated by 

utilizing the foregoing temperature solution, and the 
results are plotted as solid lines in Figs. 1 and 2. Also 
shown in the figures are several dashed lines that repre- 
sent results for annular fins having radius ratios ro*/rt 
moderately in excess of unity. Curves for annular fins 
with larger r,,*/ri are not included because they would 
undermine the clarity of the figures. In general, for given 
values of the independent parameters r,*/r{ and 
(rO* - rt) d[h/kt], the efficiency of a polygonal fin 
is lower than that of an annular fin. Moreover, the 
hexagonal fin is more efficient than the square fin. 

Upon considering Fig. 1 in greater detail, it is seen that 
the deviations between the efficiencies of square and 
annular tins are most marked for r,*/n near unity. 
Indeed, for r,*/rt = 1.2, deviations in the 7 curves as 

large as 18 per cent may occur. For r,*/ri = 1.3, 15, and 
2, the maximum deviations are respectively 9, 25, and 
1.5 per cent. In general, the results for the square and 
annular fins deviate most in the mid-range of values of 
the fin conductance parameter (ro* - ri) 1/[/z/h], in the 
neighborhood of 1.2. Another interesting feature of 
Fig. 1 is that the solid curves are not arranged con- 
secutively with r,*/rt. This is to be contrasted with the 
monotonic arrangement of the annular tin curves as a 
function of ro*/ri. 

Consideration of Fig. 2 shows that the departure of 
the results for the hexagonal fin from those for the 
annular fin are smaller than the corresponding departures 
noted in connection with Fig. 1. The maximum devia- 
tions of the 7 curves for hexagon and annulus are 10 per 
cent, 2.5 per cent, and 05 per cent respectively when 
r,*/n = 1.1, 1.2, and 1.5. 

From the foregoing discussion, it is evident that 
except for radius ratios r,*/ri near unity, the annular fin 
of equivalent surface area has a heat-transfer efficiency 
very close to that of a polygonal fin. 


